Context

Smart context management for long conversations with automatic compression
Overview
Auto context compression in Astreus provides intelligent conversation management by automatically handling long conversation histories. The system compresses older messages while preserving important information, ensuring agents can maintain coherent long conversations without exceeding model token limits.
Basic Usage
Enable auto context compression to get automatic conversation management:
import { Agent } from '@astreus-ai/astreus';
// Create an agent with auto context compression enabled
const agent = await Agent.create({
name: 'ContextAwareAgent',
model: 'gpt-4o',
autoContextCompression: true // Enable smart context management
});
// Long conversations are automatically managed
for (let i = 1; i <= 50; i++) {
const response = await agent.ask(`Tell me fact #${i} about TypeScript`);
console.log(`Fact ${i}:`, response);
}
// Agent can still reference early conversation through compressed context
const summary = await agent.ask('What was the first fact you told me?');
console.log(summary); // System retrieves from compressed context
Example with Tasks
Auto context compression works with both direct conversations and tasks:
const agent = await Agent.create({
name: 'ResearchAgent',
model: 'gpt-4o',
autoContextCompression: true,
memory: true // Often used together with memory
});
// Create multiple related tasks
const task1 = await agent.createTask({
prompt: "Research the latest trends in AI development"
});
const result1 = await agent.executeTask(task1.id);
const task2 = await agent.createTask({
prompt: "Based on the research, what are the key opportunities?"
});
const result2 = await agent.executeTask(task2.id);
// Task can reference previous context even if it was compressed
Auto context compression ensures agents can handle conversations and tasks of any length while maintaining coherence and staying within token limits.
Configuration Options
You can customize the auto context compression behavior with these parameters:
const agent = await Agent.create({
name: 'CustomContextAgent',
model: 'gpt-4o',
autoContextCompression: true,
// Context compression configuration
maxContextLength: 4000, // Trigger compression at 4000 tokens
preserveLastN: 5, // Keep last 5 messages uncompressed
compressionRatio: 0.4, // Target 40% size reduction
compressionStrategy: 'hybrid', // Use hybrid compression strategy
memory: true,
});
Configuration Parameters
Parameter | Type | Default | Description |
---|---|---|---|
autoContextCompression | boolean | false | Enable automatic context compression |
maxContextLength | number | 8000 | Token limit before compression triggers |
preserveLastN | number | 3 | Number of recent messages to keep uncompressed |
compressionRatio | number | 0.3 | Target compression ratio (0.1 = 90% reduction) |
compressionStrategy | string | 'hybrid' | Compression algorithm to use |
Compression Mathematics
The compression ratio determines how much the context is reduced:
For example, with a ratio of 0.3:
- Original: 1000 tokens
- Compressed: 300 tokens
- Reduction: 70%
The token reduction percentage is calculated as:
With compressionRatio = 0.3
:
Compression Strategies
Choose the compression strategy that best fits your use case:
'summarize'
- Text Summarization
- Best for: General conversations, Q&A, discussions
- How it works: Creates concise summaries of message groups
- Pros: Maintains context flow, good for most use cases
- Cons: May lose specific details
const agent = await Agent.create({
name: 'SummarizingAgent',
autoContextCompression: true,
compressionStrategy: 'summarize',
preserveLastN: 4
});
'selective'
- Important Message Selection
- Best for: Task-oriented conversations, technical discussions
- How it works: Uses AI to identify and preserve important messages
- Pros: Keeps crucial information intact
- Cons: May be more resource intensive
const agent = await Agent.create({
name: 'SelectiveAgent',
autoContextCompression: true,
compressionStrategy: 'selective',
preserveLastN: 3
});
'hybrid'
- Combined Approach (Recommended)
- Best for: Most applications, balanced approach
- How it works: Combines summarization and selective preservation
- Pros: Balanced between context preservation and efficiency
- Cons: None significant
const agent = await Agent.create({
name: 'HybridAgent',
autoContextCompression: true,
compressionStrategy: 'hybrid', // Default and recommended
});
Advanced Usage
Custom Compression Settings by Use Case
High-Frequency Conversations
For chatbots or interactive agents with many short messages:
const chatbot = await Agent.create({
name: 'Chatbot',
autoContextCompression: true,
maxContextLength: 2000, // Compress more frequently
preserveLastN: 8, // Keep more recent messages
compressionRatio: 0.5, // More aggressive compression
compressionStrategy: 'summarize'
});
Long-Form Content Creation
For agents working with detailed content:
const writer = await Agent.create({
name: 'ContentWriter',
autoContextCompression: true,
maxContextLength: 12000, // Allow longer context
preserveLastN: 3, // Keep recent context tight
compressionRatio: 0.2, // Gentle compression
compressionStrategy: 'selective'
});
Technical Documentation
For agents handling complex technical discussions:
const techAgent = await Agent.create({
name: 'TechnicalAssistant',
autoContextCompression: true,
maxContextLength: 6000,
preserveLastN: 5,
compressionRatio: 0.3,
compressionStrategy: 'hybrid' // Best for mixed content
});
How Context Compression Works
Compression Process
Token Monitoring: Agent continuously monitors total token count in conversation
Trigger Point: When tokens exceed maxContextLength
, compression is triggered
Message Preservation: Recent preserveLastN
messages are kept uncompressed
Content Analysis: Older messages are analyzed based on chosen strategy
Compression: Messages are compressed into summaries or selections
Context Update: Compressed context replaces original messages
What Gets Preserved
- System prompts: Always preserved
- Recent messages: Last N messages based on
preserveLastN
- Important context: Key information identified by the compression strategy
- Compressed summaries: Condensed versions of older conversations
Example Compression Flow
// Before compression (1200 tokens)
[
{ role: 'user', content: 'Tell me about TypeScript' },
{ role: 'assistant', content: 'TypeScript is...' },
{ role: 'user', content: 'What about interfaces?' },
{ role: 'assistant', content: 'Interfaces in TypeScript...' },
{ role: 'user', content: 'Show me an example' },
{ role: 'assistant', content: 'Here\'s an example...' },
]
// After compression (400 tokens)
[
{ role: 'system', content: '[Compressed] User asked about TypeScript basics, interfaces, and examples. Assistant provided comprehensive explanations...' },
{ role: 'user', content: 'Show me an example' },
{ role: 'assistant', content: 'Here\'s an example...' },
]
Monitoring and Debugging
Context Window Information
Get details about the current context state:
const contextWindow = agent.getContextWindow();
console.log({
messageCount: contextWindow.messages.length,
totalTokens: contextWindow.totalTokens,
maxTokens: contextWindow.maxTokens,
utilization: `${contextWindow.utilizationPercentage.toFixed(1)}%`
});
// Check if compression occurred
const hasCompression = contextWindow.messages.some(
msg => msg.metadata?.type === 'summary'
);
console.log('Context compressed:', hasCompression);
Context Analysis
Analyze context for optimization opportunities:
const analysis = agent.analyzeContext();
console.log({
compressionNeeded: analysis.compressionNeeded,
averageTokensPerMessage: analysis.averageTokensPerMessage,
suggestedCompressionRatio: analysis.suggestedCompressionRatio
});