MCP Integration

MCP Integration
Connect agents with external tools using Model Context Protocol.
Quick Start
Clone the Complete Example
The easiest way to get started is to clone the complete example repository:
git clone https://github.com/astreus-ai/mcp-integration
cd mcp-integration
npm install
Or Install Package Only
If you prefer to build from scratch:
npm install @astreus-ai/astreus
Environment Setup
# .env
OPENAI_API_KEY=sk-your-openai-api-key-here
DB_URL=sqlite://./astreus.db
MCP Server Integration
import { config } from 'dotenv';
import { Agent, Graph } from '@astreus-ai/astreus';
config();
async function main() {
const mainAgent = await Agent.create({
name: 'FileAnalysisAgent',
model: 'gpt-4o',
systemPrompt: 'You are a file analysis agent that processes files using graph-based workflows and MCP tools.'
});
const mcpConfig = {
name: 'filesystem',
command: "npx",
args: ["@modelcontextprotocol/server-filesystem", process.cwd()]
};
await mainAgent.addMCPServers([mcpConfig]);
await new Promise(resolve => setTimeout(resolve, 3000));
const analysisGraph = new Graph({
name: 'File Summary Workflow',
maxConcurrency: 1
}, mainAgent);
const readTask = analysisGraph.addTaskNode({
name: 'File Reading',
prompt: 'Read the content of "./info.txt" file and analyze it.',
priority: 1
});
const summaryTask = analysisGraph.addTaskNode({
name: 'Summary Creation',
prompt: 'Based on the analyzed file content from the previous task, create a concise summary and save it as "./summary.txt" file.',
dependencies: [readTask],
priority: 2
});
const result = await analysisGraph.run({
stream: true,
onChunk: (chunk) => {
console.log(chunk);
}
});
}
main().catch(console.error);
Running the Example
If you cloned the repository:
npm run dev
If you built from scratch, create an index.ts
file with the code above and run:
npx tsx index.ts
Repository
The complete example is available on GitHub: astreus-ai/mcp-integration
Last updated: September 10, 2025